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 This study aimed at investigating two main issues related to counterexample 

construction: the appropriateness of counterexamples and the types of arguments 

that are often used when refuting a false conjecture.  Twelve pre-service 

elementary teachers who demonstrated a wide range of reasoning skills 

participated in this study. The data revealed various phenomena among pre-

service teachers’ conceptions of refutations. While all participants who 

demonstrated deductive reasoning were aware of the fact that one 

counterexample was sufficient to refute a false statement, the majority of the 

participants who had not yet developed deductive reasoning failed to recognize 

that one counterexample would be enough and/or they tend to believe that 

providing more than one counterexample would support the argument further to 

refute the statement. Furthermore, the participants from the deductive proof 

scheme attempted to construct a general refutation or to provide a justification 

for their constructed counterexamples while the participants from different proof 

schemes only provided specific counterexamples without further explanation or 

justification. This study also documented various misconceptions that PSTs held 

regarding to the underlying concepts in which they were being asked to refute—

the concepts of area and perimeter or quadrilaterals—and how their 

misconceptions affected their constructed counterexamples or decisions as to 

whether the presented statements were true or false. 
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Introduction 

 

The importance of proofs and refutations has been acknowledged as an essential part of mathematics. 

Consequently, proofs and refutations have gained an increasing level of attention in recent attempts to reform 

mathematics teaching (CCSSI, 2010; NCTM, 2000). Common Core State Standards for Mathematics (CCSSM) 

suggest that students should learn to construct counterexamples in order to refute false conjectures at all levels 

from kindergarten through grade 12 (CCSSI, 2010). Teachers need to be able to refute students’ invalid claims 

to help students develop an understanding of the mathematical situation (Giannakoulias, Mastorides, Potari, & 

Zachariades, 2010). Despite the fundamental role that proof and refutation play in mathematical inquiry 

(Lakatos, 1976) and the growing appreciation of the importance of these concepts in students’ mathematical 

education (Reid, 2002), studies demonstrate that students and teachers have difficulty constructing 

counterexamples (Balacheff, 1991; Giannakoulias, Mastorides, Potari, & Zachariades, 2010; Potari, 

Zachariades, & Zaslavsky, 2010).  

 

Although teachers’ (both in-service and pre-service) justifications and proof strategies have been explored by 

many researchers (Martin & Harel, 1989; Simon & Blume, 1996; Stylianides & Stylianides, 2009), the process 

of refutation has not been extensively investigated with regard to the teachers.  The aim of this study is to 

examine the ways that pre-service elementary teachers (PSTs) who demonstrated a wide range of reasoning 

skills refute false mathematical conjectures. That is, what does it take for PSTs from different proof schemes—

specifically, external, empirical and deductive proof schemes— to ―disprove‖ a statement and what kind of 

counterexamples convinces them that a conjecture is false? 

 

Particularly, the following two research questions guided this study: 

 

1. How do pre-service elementary teachers refute false mathematical statements? 

2. How do PSTs’ conceptions of refutations differ based on their proof schemes? 
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Frameworks 
 

Framework to Interpret PSTs’ Proof Schemes  

 

Several researchers have attempted to understand students’ approaches to mathematical proof by classifying 

these approaches along several dimensions – an approach currently proving fruitful in understanding students’ 

difficulties (Balacheff, 1988; Harel & Sowder, 1998; Van Dormolen, 1977). Researchers have hypothesized that 

the development of students’ understanding of mathematical justification is likely to proceed from inductive to 

deductive or from particular cases toward greater generality (Harel & Sowder, 1998; Simon & Blume, 1996). 

 

Harel and Sowder (1998) characterized proof schemes into three major categories as:(1) external proof schemes 

(2) empirical proof schemes, and (3) analytic proof schemes. External conviction proof schemes are ones in 

which students convince themselves and others by referring to external sources such as the authority 

(Authoritarian proof scheme), the format of the argument (Ritual proof scheme), or symbolic manipulation 

without attending to the meaning of the manipulation (Non-referential symbolic proof scheme).  Empirical proof 

schemes can be either inductive or perceptual. Inductive proof schemes are those that rely on examples or direct 

measurements. Several researchers have posed questions such as: What might make one example or empirical 

justification stronger than another? As a result, they have divided inductive justifications into further 

subcategories as Naïve Empiricism and Crucial Empiricism (e.g. Balacheff, 1988; Harel & Sowder, 2007; 

Quinn, 2009). The same approach was followed in this study. Perceptual proof schemes are based on 

rudimentary mental images that are not fully supported by deduction. Analytic proof schemes are characterized 

by the validation of conjectures via the use of logical deduction. The analytical proof schemes category was 

greatly revised by Harel (2007) and renamed as deductive proof schemes. There are two types of deductive 

proofs: transformational and modern axiomatic. The student considers generality aspects, applies goal-oriented 

and anticipated mental operations, and uses logical inferences at these levels. In this study, these classifications 

were used to analyze PSTs’ conceptions of proof.  

 

Table 1. Taxonomies of proof scheme 

Categories Characteristics of Categories 

 Subcategories Characteristics of Subcategories 

External Proof Scheme Responses appeal to external authority 

 (1) Authoritarian proof  Depends on an authority  

(2) Ritual proof   Depends on the appearance of the 

argument 

(3) Non-referential symbolic 

proof 

 

Depends on some symbolic 

manipulation 

Empirical Proof Scheme Responses appeal to empirical demonstrations, or rudimentary 

transformational frame 

 (1) Naïve Empiricism 

 

An assertion is valid from a small 

number of cases  

(2) Crucial Empiricism  

 

An assertion is valid from strategically 

chosen cases or examples 

(3) Perceptual Proof An assertion is valid from inferences 

based on rudimentary mental images  

 

Deductive Proof Scheme Responses appeal to rigorous and logical reasoning 

 (1) Transformational proof 

scheme 

Involves goal-oriented operations on 

objects  

 

(2) Modern Axiomatic proof 

scheme 

Involves statements that do not require 

justification 
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Framework to Interpret PSTs’ Conceptions of Counterexamples  

 

Potari, Zachariades, and Zaslavsky (2010) argue that refuting conjectures and justifying invalid claims is a 

complex process that goes beyond the syntactic derivations of deductive proof. Bills et al. (2006) distinguish 

three special types of examples—generic example, counterexample and non-example. Generic examples are 

examples of a concept and the core of a generic proof. An example is labeled as a counter-example if that 

example contradicts a hypothesis or assertion. Finally, an example is labeled as a non-example if they serve to 

clarify the boundaries where a procedure may not be applied or fails (Bills et al., 2006). Peled and Zaslavsky 

(1997), on the other hand, categorize the counterexamples according to their explanatory power into specific, 

semi-general and general ones. Selden and Selden (1998) also adopted these three categories—specific, semi-

general, and general— to classify teachers’ generated counterexamples. Similar to the distinction between 

―proof that proves‖ and ―proofs that explains‖ (Hanna, 2000), counterexamples can be distinguished as follows: 

(1) a proof by counterexample that shows only that a proposition is false, (2) a proof by semi general 

counterexample that provides some ideas about why a proposition is false or how the counterexample 

contradicts the claim, but does not tell ―the whole story‖ and (3) a proof by a general counterexamples provides 

insight into why a proposition is false and suggests a way to generate not only one counterexample but an entire 

counterexample space (Peled & Zaslavsky, 1997). These three levels were used to code PSTs’ constructions of 

counterexamples.  

 

Table 2. Counterexample levels 

Categories  Characteristics of Categories  

 

Specific Counterexample  Responses appeal to the use of counterexample(s) 

that show the falsity of the statement  

Semi-general Counterexample  Responses appeal to the use of counterexample(s) 

that show the falsity of the statement and some 

ideas for why the statement is false 

General Counterexample  Responses appeal to generating whole space of 

counterexamples  

 

 

Method 

 

Participants 

 

In order to represent a wide range of proof and reasoning abilities a proof questionnaire consisting of sixteen 

open-ended questions was administered to one section of Geometry and Measurement course and one section of 

a Mathematics Methods course at a large Mid-western university in the United States. According to the 

questionnaire results, six
*
 pre-service teachers (2 from each major category—external, empirical, and deductive) 

from a Geometry and Measurement course and seven pre-service teachers (at least 2 from each major category) 

from a Mathematics Methods course were selected to participate in the individual interviews.  

 

The Geometry and Measurement course and the Mathematics Methods course were selected for the following 

two specific reasons:  

 

(1) Mathematical proofs and refutations along with geometrical concepts such as area-perimeter or 

quadrilaterals, which were underlying concepts of the interview tasks, constituted an important part of 

the Geometry and Measurement course curriculum. Participants of this course were engaged in 

constructing as well as evaluating mathematical proofs and refutations while they were exploring 

geometric concepts during the semester. Thus, it was anticipated to detect some changes in PSTs’ 

conceptions of proof and it was aimed to investigate the effects of these changes on PSTs’ conceptions 

of refutations.  

(2) Unlike the Geometry and Measurement course, the Mathematics Methods course relied less heavily on 

mathematical proofs and refutations as well as geometric concepts—area-perimeter and quadrilaterals. 

However, all participants who enrolled in the Mathematics Methods course already took the geometry 

course and passed with a passing grade C+ or above. Although it was not anticipated to detect any 

changes in PSTs’ conceptions of proofs in this course since mathematical proofs did not constitute the 

                                                           
*
 One participant completed only pre-interviews. In this study only the results from the participants who 

completed both the pre- and post-interviews will be shared.  
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primary focus of the course, it was anticipated that including participants from this course would be a 

good contrast to the Geometry and Measurement course and might provide further opportunity to 

investigate the effects of PSTs’ conceptions of proof on their conceptions of refutations.  

 

 

Data Sources  

 

Two main data sources—Questionnaire and Task-based Interviews—were used to investigate the research 

questions in this study. In this section these data sources and the purpose for using these sources will be 

described in details.  

 

 

Questionnaire  

 

A written questionnaire with sixteen open-ended questions was developed to administer to one section of the 

Geometry and Measurement and one section of the Mathematics Methods course at the beginning of the 

semester. Questionnaire served to two main purposes in this study: (1) to make sure to select participants who 

demonstrated varied levels of reasoning skills in terms of mathematical proofs and refutations and (2) to gain 

background information with respect to PSTs’ conceptions of proof and counterexamples as well as their 

content knowledge. The questions for the questionnaire were designed to assess PSTs’ abilities to prove/ refute, 

to evaluate the correctness of proof (one incorrect and one correct) / a counterexamples presented as well as to 

assess PSTs’ knowledge of content, in particular in the concepts of quadrilaterals and area-perimeter. The 

questions were adopted and modified from existing literature such as Knuth, 2002 or Kotelawala, 2009 and from 

high school geometry textbooks (see Appendix A for sample questionnaire questions). 

 

 

Task-based Interviews 

 

All selected participants based on their responses to the questionnaire questions participated in an hour-long 

semi-structured task-based interview at the beginning and again near the end of the semester. Participants were 

interviewed individually by the author at the beginning and again near the end of the semester in order to detect 

any possible changes in their conceptions of proof and how it might influence their conceptions of 

counterexamples. During the individual interviews, the participants were provided several tasks that varied in 

their validity and they were asked to produce a justification in cases where they believed the statements to be 

true and a refutation where they believed the statements to be false. Three of the tasks that were used included 

true mathematical statements where the participants were expected to provide a justification. Two of the tasks
†
 

used included false mathematical conjectures, where the participants were expected to refute the statements. 

Detailed descriptions of these two tasks will be provided below.  

 

 

Tasks to Investigate Conceptions of Counterexamples 

 

One task during the pre-interviews and two tasks during the post-interviews were used to understand the ways 

used by pre-service teachers to refute false mathematical conjectures. In this part, these tasks will be described 

in detail.  

 

Task A. This task (see figure 1) was designed to analyze, first, pre-service elementary teachers’ competence in 

providing counterexamples, and then, an overview of their ideas as to what constitutes a convincing 

counterexample. The task was designed to be an unfamiliar case and it was adopted from Simon and Blume 

(1996). Participants were asked first to calculate the area of the shape in figure 1 and then validate the method 

presented to find the area of the shape. 

 

Zazkis and Hazzan (1998) defined reflection questions as the questions that ask participants to reflect on a 

solution presented by a third imaginary person and they argue that the benefit of asking reflection questions is to 

shift the focus from solution to the reason for the solution. After asking participants to find the area of the shape, 

they were presented a method and asked to validate whether it was a true method. Thus, this task was a 

                                                           
†
 Only one task (Task A), which included false mathematical conjecture, was used during the pre-interviews. 

Another task (Task B) was added to further investigate how PSTs refute false mathematical conjectures during 

the post-interviews. 
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reflection task in a way that participants were asked to reflect on a presented method to calculate the area of a 

shape.  

 

 

Find the area of the shape below. 

 
Method: 
If you take some kind of string and measure the whole outside of the area and then pull that into a shape 

like a rectangle, you can easily calculate the area of the figure. 

Justify whether or not the above method will work to find the area of the figure. 

Figure 1. Task A 

 

Task B. During post-interviews another task was included.  

 

Task B: True or false?  In a quadrilateral at least one diagonal cuts the area in half.  If true, provide a 

justification.  If false, provide a counterexample. 

Figure 2. Task B 

 

This task was adopted from Healy and Hoyles (1998) and was designed to be an unfamiliar case. Zazkis and 

Hazzan (1998) identified as familiar with a twist. The chosen task was familiar in a way that finding or 

comparing areas of triangles, and constructing diagonals of quadrilaterals or considering diagonal properties, 

does not present novelty in the assignment. However, the twist was in the idea of congruency and equality.  

  

 

Data Analysis 

 

Analyzing PSTs’ Proof Schemes 

 

Each interview was transcribed, and the interview transcripts and participants’ written responses were carefully 

read, initial impressions summarized, and interesting issues regarding the participants’ proof and 

counterexamples validations highlighted; statement verifications, and proof and counterexample productions as 

well as evaluations were considered.  

 

The data analysis was started with examining of the transcripts and written work of each participant by using a 

constant comparative method of coding (Glaser & Strauss, 1967). Interview transcripts were analyzed line by 

line and internal sets of codes were derived from the data. After the transcripts were analyzed by using a 

constant comparative method of coding, the transcripts were coded again by using the proof schemes in the 

conceptual framework as external codes (see Table 1).  

 

The proof schemes described in the framework were used as priori coding scheme and the responses of the 

participants (their construction and evaluation of mathematical arguments) were categorized based on the source 

of their conviction. For instance, if the primary source of PSTs conviction laid into providing specific examples, 

their responses were coded at empirical proof schemes. Stylianides and Stylianides (2009) stated that many of 

the pre-service elementary teachers who developed empirical arguments were also aware that their arguments 

were not proof. In this study, PSTs’ responses were coded at empirical level not only when they constructed 

empirical arguments but also they classified empirical arguments when presented as mathematical proofs. In 

other words, PSTs who were coded at empirical reasoning demonstrated a lack of essential understanding of 

generality aspect of mathematical proofs. A team of second coders was asked to code a sample of the interview 
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data (20 percent of the interview data). The codings then were compared and discussed until all disagreements 

were solved.  

 

 

Analyzing PSTs’ Conceptions of Refutations 

 

After participants’ proof schemes were determined, their responses to the two tasks (Task A and Task B) that 

required constructing refutations were analyzed. Firstly, the counterexamples that were constructed by the 

participants were coded as relevant or irrelevant based on whether the counterexample(s) were relevant or 

irrelevant to deduce the falsity of the statements. Then, relevant counterexamples were categorized into three 

categories—specific, semi-general, and general—based on their explanatory power. The participants’ responses 

to the tasks A and B were also compared with others in the same proof schemes in order to investigate similar 

patterns across the data. A team of second coders was again asked to code a sample of counterexamples that 

were constructed by the participants. The codings, then, were compared and discussed if there were any 

disagreements in the codings of the counterexamples. It should be noted here that the procedures of analyzing 

PSTs’ conceptions of proofs and counterexamples as described above were also applied to analyzing their 

responses to the Questionnaire questions.  

 

 

Results and Discussion 
 

In this part, PSTs’ responses to the two tasks—Task A and Task B—(see Figure 1 and 2) will be reported in 

details. Even though the main focus of this article is on PSTs’ conceptions of counterexamples and their ways of 

refuting false mathematical conjectures, their proof schemes are important: (1) to illustrate how PSTs from 

different proof schemes refute false mathematical conjectures; (2) to provide a full picture of participants’ 

reasoning skills to justify mathematical conjectures. Thus, in the following section PSTs’ proof schemes will be 

displayed in a summarized table (see Table 3) along with a sample of their responses to the questionnaire 

questions in order to explain how PSTs’ conceptions of proof were categorized according to the framework.  

 

 

Participant Profiles 

 

According to the questionnaire and task-based interview results, participants demonstrated a wide range of 

abilities in terms of their proof schemes. Table 3 below summarizes participants’ proof schemes in a cumulative 

way based on PSTs’ responses to the questionnaire questions and the interview tasks. Then, PSTs’ responses to 

sample questionnaire questions will be presented next in order to demonstrate how the participants were selected 

and how the frameworks to investigate PSTs’ conceptions of proof and counterexamples were applied to 

questionnaire analysis. 

 

Table 3. Pre-service teachers’ proof schemes 

Categories Participants in Each Category 

Pre-Interviews                                   Post-Interviews 

Geometry & 

Measurement  

Mathematics 

Methods 

Geometry & 

Measurement 

Mathematics 

Methods 

External Proof Scheme Elizabeth Elaine 

Laura 

Daisy 

Elizabeth   Elaine 

Laura 

 

 

Empirical 

Proof Scheme 

Naïve 

Empiricism  

Chloe 

Sara                                                          

Casey 

Laura 

Daisy 

Sara  Casey 

Laura 

Daisy 

 

Crucial 

Empiricism  

Kelly 

 

 

   

Deductive 

Proof Scheme 

  Scott                                                                   Jack 

Miranda 

Mary 

Chloe 

Kelly  

Scott  

Jack 

Miranda 

Mary 
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Participants’ Responses to the Questionnaire Questions 

 

In this part PSTs’ responses to a sample of the questionnaire questions will be demonstrated in order to provide 

the reader with a clear understanding of how the framework is applied. Participants’ responses to the 

questionnaire questions were categorized into three main categories—external, empirical or deductive—based 

on the source of their conviction. If PSTs’ primary source of conviction resulted from external reasons such as 

the format of the argument as it was in the case of Elizabeth, PSTs’ responses were coded as external reasoning. 

In the example below (see figure 3), Elizabeth argued that the presented proof (see question 3 in the 

questionnaire in appendix A), which was an incorrect argument, could be classified as a correct mathematical 

proof. In addition to not recognizing the logical flaw in the presented argument, Elizabeth classified the 

argument as a mathematical proof solely based on its presented format. It was evident in her response in figure 3 

that a mathematical proof should consist of steps and use formal language such as using triangle congruency. 

Yopp (2015) argues that PSTs’ claims are influenced by their use of language. In this case, it was evident that 

seeing mathematical language was used was an important criterion for Elizabeth when evaluating mathematical 

arguments.  

 

 
Figure 3. Elizabeth’s response to a questionnaire question  

 

 
Figure 4. Jack’s response to a questionnaire question 

 
Unlike Elizabeth, Jack was able to detect the flaw in the logic of the presented argument (see the questionnaire 

question 3 in appendix A) and classify the argument as an incorrect argument. Several researchers have argued 
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that the reading of proof has received relatively little attention despite the fact that there is a growth in 

educational research on mathematical proof (Alcock & Weber, 2005; Selden & Selden, 2003). The way a person 

evaluates a mathematical argument is necessarily dependent on how he or she removes personal doubts about 

the truth of mathematical statements (Alcock & Weber, 2005). It was evident when Elizabeth read the presented 

argument; she focused on whether the argument had the appearance of mathematical proofs that she had seen in 

the past, such as the use of steps, the appearance of mathematical symbols or formal language in geometry (see 

figure 3). However, when Jack read the same argument it was evident that he focused on whether the content of 

the argument made sense. Thus, his response in figure 4 was coded as deductive proof scheme in this question.  

 
In addition to consructing and evalutating mathematical proofs, PSTs were also asked to refute false 

mathematical statements as well as to evalute presented counterexamples  in the questionnaire (i.e. questionnaire 

question 1 in appendix A). In the following response in figure 5, Scott was able to evalate the correctness of the 

presented mathematical statement and refute the statement by presenting a counterexample. His counterexample 

was coded as a semi-general counterexample since he justified why his counterexample contradicted the 

statement as opposed to solely providing his counterexample.  

 

 
Figure 5. Scott’s response to a questionnaire question 

 

PSTs’ conceptions of proof, which were displayed in Table 3,  were determined based on their responses to the 

questionnaire questions as well as the individual interview tasks. Since the primary purpose of the study is to 

investigate how PSTs refute false mathematical statements; only PSTs’ responses to the two interview tasks (see 

Task A and Task B) will be presented in details next.  

 

 

Participants’ Conceptions of Refutations 

 

The main purpose of this study is to investigate what it takes pre-service elementary teachers to refute false 

mathematical statements which also includes what kind of counterexamples PSTs find convincing. In this 

section, how PST chose to refute false mathematical statements and their constructed counterexample(s) in order 

to refute these false mathematical statements will be described. Table 4 below summarizes PSTs’ 

counterexample levels.   

 

Table 4. Pre-service teachers’ counterexample levels 

Categories Participants in Each Category 

Pre-Interviews                                   Post-Interviews 

Geometry & 

Measurement  

Mathematics 

Methods 

Geometry & 

Measurement  

Mathematics 

Methods 

Specific Counterexample  Elizabeth 

Chloe 

Kelly 

Sara                                                                       

Elaine 

Laura 

Daisy  

Casey 

Elizabeth   

Sara 

Chloe 

Kelly 

Elaine 

Laura 

Daisy 

Casey 

Semi-general Counterexample Scott Miranda  

Jack  

Mary 

 

 

Miranda 

Mary 

General 

Counterexample  

 - - Scott Jack 

 

 

Pre-Interview Results 

 

Geometry and measurement course. Participants from the Geometry and Measurement course—Sara, Scott, 

Kelly, Elizabeth, and Chloe (all pseudonyms)—demonstrated a wide range of reasoning abilities regarding to 
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mathematical proofs in the individual interviews, as can be seen in Table 3 above. Scott was the only participant 

from the Geometry and Measurement course who demonstrated deductive reasoning during the pre-interviews. 

Elizabeth demonstrated external proof scheme and the rest of the participants demonstrated empirical proof 

scheme (Sara and Chloe demonstrated naïve empiricism while Kelly demonstrated crucial empiricism).  

 

In this part, how PST from the Geometry and Measurement course refuted false mathematical conjectures with 

respect to their proof schemes will be discussed. When task A was presented, all participants except Scott 

believed that the method would work without generating examples. Besides their proof schemes, another reason 

for why PSTs did not choose to generate example to test the method might be PSTs’ limited content knowledge 

about area and perimeter. There is evidence in the literature that pre-service teachers confuse perimeter and area 

and they believe that there is a relationship between perimeter and area (Baturo & Nason, 1996; Fuller, 1997; 

Heaton, 1992). 

 

Elizabeth: I do not know. I think I would not be able to do it (referring to finding the area of the shape). 

I do not even know how I could measure it (referring to the shape). 

Interviewer: If you were able to use a ruler, protractor or any other measurement tool, would that help 

you to find the area? 

Elizabeth: Maybe. Because of the lines, I do not know how I could measure the lines. (Pause). I would 

try to measure the lines (referring to measuring the outside of the shape), and then find the area, not the 

perfect area, though. 

Interviewer: What would you do next after you measure the lines? 

Elizabeth: And then times them (the measurement of the outside of the shape). No, wait! I will add 

them. It probably would not be exact, but it would be an estimate if I add all the lengths of the lines up. 

Interviewer: What would that give you? 

Elizabeth: The area of this shape. Well, not the perfect area.  

 

As can be seen in the excerpt, Elizabeth confused area and perimeter. She suggested measuring the lines that 

surrounded the shape and add them up to find the area. Later, when the method for task A was presented, she 

believed that it would work. Unlike Elizabeth, Sara was aware of the difference between area and perimeter. 

However, Sara believed that there was a relationship between perimeter and area. It is well evidenced in the 

existing literature that pre-service teachers believe that there is a constant relationship between area and 

perimeter (Baturo & Nason, 1996; Simon & Blume, 1994). 

 

Interviewer: How did you decide that this method would work? 

Sara: Um, well, if you took the string, you can measure the outside of the shape. If you put it into a 

rectangle, you could measure the sides easily and then you just know that the area of a rectangle is 

length times width. So, you can just easily find the area from there. 

Interviewer: When you measure the outside of this shape with the string, what are you measuring?  

Sara: You are measuring the perimeter. 

Interviewer: How do you know that if the perimeter is the same, then the area would also be the same? 

Sara: Because if, well, because like the space inside of this (the shape) would be equal to the space 

inside of the rectangle since they have the same outside. Perimeter and area are related! The bigger the 

perimeter, the bigger the area! 

 

Stavy and Tirosh (2000) describes an intuitive rule—More A- More B—, which evolves from experiences in 

everyday life. In this intuitive rule, a perceptual quantity (A) can serve as a criterion for comparing another 

quantity (B). They argue that this rule is common core to many misconceptions in science as well as in 

mathematics. In this case, Sara was arguing that if the perceptual quantity –perimeter– is bigger, then another 

quantity –area–will also be bigger, which indeed prevented her from evaluating the presented method.  

 

All participants except Scott believed that the method would be sufficient to calculate the area of the shape in 

task A without generating any examples to check the validity of the method. Scott, on the other hand, 

questioned whether the method would work. In order to do that, he chose to generate examples (see figure 6).  

 

Interviewer: Do you believe that this method might work? 

Scott: So if you take a string and do the outside, that’s a perimeter. And (pause) I am thinking if area 

and perimeter are related, whether you could calculate the area of a rectangle by taking a string and 

forming that into a rectangle. I wonder if you formed it into a triangle, whether it would give you the 

same area. I guess I would just try to see if it works for other figures. So, let’s try. If the whole thing 

was 12 cm around, then I could draw a rectangle with 4 sides of 3. I guess it does not need to be exact. 
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This would be a square, but a square is a rectangle (drawing a square of side 3 in figure 6). Then, this 

would have the same length. It would be 4,4,4 (drawing an equilateral triangle with the side of 4 in 

figure 6). 

 
Figure 6. Scot’s counterexample 

 

Scott: (Calculating the areas of the shapes he drew in figure 6). These are all the same (referring to the 

sides of the triangle in figure 6). This is 90 degrees, these are 60,60 (dropping a perpendicular to one of 

the sides of the triangle). So, in order to find the area of a rectangle, length times width. It (the area of 

the square) is 9 cm
2
. I am trying to find the area of this triangle. It is ½ base times height, so we have to 

find the height. This makes 2 and 2 (he dropped a perpendicular from the top vertex to the opposite 

side which also bisected the opposite side). So, 2
2
 + h

2
 = 4

2
 (applying the Pythagorean theorem to find 

the height of the triangle he constructed into the equilateral triangle). The height of the triangle is 2√3 

and it makes the area ½ .4. 2√3 (calculating the area of the triangle). The area of the triangle is 4 √ 

3.The area of the square is 9 and the area of the triangle is 4 √ 3.No, it is not working! Both the square 

and the triangle have the same perimeter, but yet different areas. So, area and perimeter are not related.  

 

Dahlberg and Housman (1997) stated the benefits of example generation by evidencing that the students who 

generated examples were the ones best able to identify the correctness of conjectures and provide explanations. 

They also found that the students who primarily reformulated concepts without generating examples were more 

easily convinced of the validity of a false conjecture. The present study aligned with the results of Dalhberg and 

Housman’s study by concluding that participants at the deductive level attempted to generate examples to 

identify the correctness of the statements while others were easily convinced of the validity of a false conjecture. 

Additionally, Scott provided a semi-general counterexample by explaining why these examples contradict to the 

claim. Even though he did not attempt to cover the whole space of counterexamples or explain the condition 

when the area and the perimeter of two shapes do not correlate, he attempted to explain his constructed 

counterexamples.  

 

Watson and Mason (2005) coin the term example space to refer to the collection of examples that fulfill various 

kinds of functions. Bills et al. (2006) argue that the appropriateness of counterexamples for a person should be 

understood in terms of his/her possible example spaces, thus, in return may provide insight into that person’s 

possible example spaces. It was evident in the study that generating counterexamples encompassed examples 

that were accessible to the participants in response to a particular situation. For instance, when Scott attempted 

to generate a rectangle with the perimeter of 12 cm and drew a square of side of 3 cm, it was evident that he was 

reasoning inclusively and seeing square as a rectangle.  

 

Another difference between participants who demonstrated deductive reasoning and those who did not was 

deciding whether one counterexample would be sufficient to disprove the statement. The majority of the 

participants—Elizabeth, Kelly, and Chloe—who did not demonstrate deductive reasoning believed that one 

counterexample would not be enough to refute or argued that providing more than one counterexample would 

make their argument stronger. However, it should be noted here that even though the participants argued that 

providing more than one counterexample would be necessary or make the argument stronger, they all were 

convinced that the method would not always work after seeing one counterexample.  

 

As can be seen in the following quote, Elizabeth argued that providing more than one counterexample could 

make an argument more convincing. 
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Elizabeth: I mean the more the merrier. I would maybe give more than one example, but I think this 

example shows that does not work. 

 

Similarly, Kelly argued one counterexample would not be enough to refute a statement and providing more 

counterexamples could be more convincing to refute a statement. 

 

Kelly: I would probably try to show a couple shapes, um, not just one rectangle. I would try to show 

rectangles in different sizes. 

Interviewer: How many rectangles would you show? 

Kelly: I mean I would show a hundred of them if I wanted to, but it would be a waste of time (smiles), 

take a lot of time (Pause). I would probably show six examples, because a hundred is hard to do and 

showing just two examples is too little (smiles). 

 

Mathematics methods course. Similar patterns were observed among participants from the mathematics methods 

course. In the mathematics methods course, three participants—Mary, Jack and Miranda—demonstrated 

deductive reasoning, Casey demonstrated empirical reasoning and Elaine demonstrated external proof scheme 

during the pre-task based interviews. Two participants—Laura and Daisy—demonstrated the characteristics of 

both empirical and external proof scheme, so they were coded at two levels.  

 

When task A was presented, all participants except the three participants—Mary, Jack, and Miranda, who 

demonstrated deductive reasoning—believed that the method would hold true without attempting to generate 

examples to check the validity of the method. One of the reasons was that participants believed that there was a 

relationship between area and perimeter. 

 

All participants who had not yet developed deductive reasoning, except Laura, argued that one counterexample 

would not be enough to refute the statement. Those participants also claimed that providing more than one 

example would strengthen the argument to refute the statement. 

 

When presented the method for task A, Elaine thought that the method would work to calculate the area. Then, 

she attempted to generate examples not to refute the statement, but to justify that the method would hold true 

(see figure 7).  

 
Figure 7. Elaine’s counterexample for task A 

 

Interviewer: Do you think that this method would work? 

Elaine: Uh huh, yes. 

Interviewer: Ok, how would you convince someone that this method would work to find the area of a 

shape like this? 

Elaine: Um, I would probably do two rectangles. Um, I guess would do (drawing the rectangles in 

figure 7). (Pause) No, wait, it does not work. It is false! 

 

As can be seen in the excerpt, Elaine drew 20 by 6 and 15 by 11 rectangles in order to justify the method, which 

resulted in recognition of the invalidity of the method. After realizing that the method would not always hold 

true, she refuted the method. However, she also said that she would provide several counterexamples to refute 

the method. 

 

Interviewer: So, how would you convince someone that this method would not work? 

Elaine: I would draw different shapes, like a triangle, circle, um, a square with the same perimeter and 

then try to find their areas. 
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Interviewer: If this was your exam question, analyzing whether this method was true or false, and you 

said that it was false and provided these examples (referring to 20 by 6 and 15 by 11 rectangles), do 

you think that you would get full points for the question?  

Elaine: Um, I would definitely try to put more examples if this was in the exam. I think that I would 

just support the answer more! 

 

Elaine concluded that the method would not work after being able to construct a counterexample; however, she 

believed that she would provide more counterexamples if it was an exam question in order to make the 

argument stronger. Harel and Sowder (1998; 2007) define a proof as an argument that a person uses to convince 

himself or herself and others of the truth or falseness of a mathematical statement; thus, it consists of what 

constitutes ―ascertaining‖ and ―persuading‖ for a person or community. They use the terms ascertaining and 

persuading to describe complementary processes of proving as convincing oneself and convincing others. It was 

evident in this study that even though finding one counterexample is convincing for themselves to refute the 

method, the participants attempted to provide more counterexamples when it comes to convince others.  

 

Casey also argued that more counterexamples could make an argument more convincing. 

 
Figure 8. Counterexamples constructed by Casey 

 

Casey: Um, I mean I would think two would be enough to show that it would not work every way you 

do it, but the more (examples) you have would be more convincing. The more you have, the more 

convincing it will be! 

 

Similar to Scott from the Geometry and Measurement class who demonstrated deductive reasoning, Miranda, 

Jack, and Mary from the mathematics methods course also questioned whether the method would work and 

checked the validity of the method by generating examples. 

 

Miranda: (Reading the method) I do not know if this would work (laughs). 

Because it is assuming that the perimeter of the object is what corresponds with the area, but I do not 

think that is true. 

Interviewer:  How did you decide that it is not true? 

Miranda: Um, well, I drew another shape in my head. It was like, because it has a really long perimeter, 

but would not have a lot of area, cause it is really skinny, so if you like measured out the lines it would 

not necessarily, like, correspond with the area. 

 

Mary, Jack, and Miranda were also able to construct an appropriate counterexample when presented with an 

incorrect mathematical statement. Furthermore, they all were able to state that providing one counterexample 

would be enough to refute the statement. 

 

When Jack was presented with task A, he questioned whether the method would work. He constructed a 4 by 2 

rectangle and a circle with perimeter of 12 (see figure 9). He realized that the areas would differ and concluded 

the method would not work. Even though Jack argued that one counterexample would be enough to refute a 

statement, he also argued that providing a generic counterexample would be more convincing than providing a 

specific counterexample. 

 

He suggested using the following argument to refute the use of the method presented for task A (see figure 9):  
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Figure 9. Jack’s counterexample for task A 

 

Interviewer: How many counterexamples you would you provide? 

Jack: Um, well, I think this would almost be a good enough counterexample  

Interviewer:  A circle and a rectangle 

Jack: Uh huh, so these are two possible shapes that you could have made. And so, honestly, the best 

counterexample would be a general case that would get messy, but, if I want to give you, I have to give 

you a, I can just, you know a, b, these are the same so the perimeter of the rectangle is 2a+2b. That’s 

perimeter, but the area is ab. And then, I drew a circle with some radius that I have not found yet and I 

am wanting to prove that they have to, the perimeters have to be the same, so 2a+2b equals 2 .π.r, so 

divide by 2.  So, a+b divided by π would be my radius. And then, to find the area, I have to use πr
2 
 

and that would give me (a+b)
2 
over π  after, I just solved that one from square the top and the bottom, π 

is canceled, so this over π. I don’t, I do not believe that would give you ab. 

 

Jack was the only participant who was concerned about the generality of his counterexample during the pre-

interviews. Even though the other participants from deductive proof scheme attempted to explain how they 

generated their counterexamples and why their examples refute the statement, they all provided semi-general 

counterexamples with specific measurements and explained why those examples contradicted the claim during 

the pre-interviews. Jack, however, attempted to construct a counterexample that can be generalizable to other 

cases and contradicts the claim by using variables (a,b )instead of specific numbers (see figure 9).  

 

 

Post Interview Results 

 

Geometry and measurement course. Chloe’s and Kelly’s conceptions of counterexamples showed differences in 

post-task-based interviews. Unlike pre-task-based interviews, both Kelly and Chloe were aware that only one 

counterexample would be needed to refute the method presented for task A. In the following excerpt, Kelly 

needed to construct more than one counterexample in order to convince herself that the method would not 

always hold true. However, she was able to state that only one counterexample would be enough to disprove the 

statement.  

 

Kelly: I would say, I mean I just think that since I know that the, that a rectangle is, I mean, let's say 

that this is the rectangle and it's three by two since I'm not changing the length of what this was I'm just 

putting it into a shape that I can calculate (if) it'll be true (drawing the rectangles in figure 10).  

 
Figure 10. Counterexample generated by Kelly 
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Interviewer: Do you think that the area of those rectangles (4 by 1 and 3 by 2 rectangles) will be the 

same? 

Kelly: The area, I don’t know, yeah it should be, three times two is six, four times one is four though 

why is that happening, no! I don't know that would be six. (Pause).  The side lengths equal ten; it will 

work but I don't know why it's not doing that for, I'm confusing myself so as long as I measure this to 

be ten, no that's perimeter, the length is ten but it [area] won't be the same if you're using the same 

string.  

 

After realizing that the method would not always work, Kelly wanted to check further examples to convince 

herself that the method was indeed not valid. Zazkis and Chernoff (2008) introduced the notions of pivotal 

example and bridging example and highlighted their roles in creating and resolving cognitive conflict. It was 

evident in this excerpt that the rectangles in figure 10 created a cognitive conflict for Kelly; however, they were 

not enough to resolve the conflict since Kelly attempted to construct more examples, as can be seen in figure 11, 

instead of refuting the method right away. 

 
Figure 11. The bridging examples that Kelly constructed 

 

Kelly: It should work, I thought it would work, hold on. Ok, I'm going to try five by four is going to be 

twenty and that so that's eighteen and now that's eighteen, no it won't always work (drawing rectangles 

in figure 11). This is so bad! This is like rocking my world right now! 

Interviewer: How would you use disprove this method works if this was your exam question? 

Kelly: I would just draw this (referring to the rectangles in figure 11)!  

 

Kelly realized that the method would not work and she explained that providing one counterexample would 

suffice to refute the method. In the pre interviews, however, she argued that more counterexample would be 

needed. Thus her conception of refutation was changed between the pre and post interviews along with her 

conceptions of proofs. It should be reminded that she demonstrated empirical reasoning during the pre-

interviews; however, she demonstrated deductive reasoning during the post interviews. Her counterexample that 

she described she would provide if it were the exam question was coded as specific counterexample.  

 

When Scott, on the other hand, who demonstrated deductive reasoning during the pre as well as the post 

interviews, was presented with task A, he was able construct a 2 by 2 square and a 3 by 1 rectangle with 

perimeter of 8 to refute the method (see figure 12). Even though Scott argued that one counterexample would be 

enough to refute the method, he searched for further explanation for why the method would not always work as 

can be seen in the excerpt below.  

 
Figure 12. Scott’s refutation for task A 
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Scott: Um, this method will not always work. You can make two rectangles with the same perimeter 

(drawing rectangles in figure 12). I did 2 by 2 rectangle, well it is actually a square but squares are 

rectangles, and 3 by 1 rectangle. They have the same perimeter, 8, but different area. The square has 

bigger area than the rectangle. It is, um, I think the area will increase if your shape looks more like a 

square. Like, if the perimeter is 12 then you can make a 3 by 3, 2 by 4, and 1 by 5 rectangles (drawing 

the rectangles in figure 13). Well actually you can make many rectangles with the same perimeter and 

when the shape is least like the square, the area will be lowest. The area of the square is 9 and the area 

of the 5 by 1 rectangle is only 5.  

 
Figure 13. Scott’s argument for task A 

 

Interviewer: Ok, how would you justify that the method would not always work if this were your exam 

question? 

Scott: I would use these two rectangles (rectangles in figure 12). Because if you disprove it once then it 

disproves it; giving one example is enough to disprove a statement! 

 

Scott knew that one counterexample was enough to show the falsity of a statement. However, he went further by 

showing a way to generate whole sets of counterexamples by saying ―Well actually, you can make many 

rectangles with the same perimeter and when the shape is least like the square, the area will be lowest…‖as 

opposed to finding just one relevant counterexample. Ma (1999) investigated teachers’ from two countries (the 

U.S. and China) reactions to the claim of ― if the perimeter increases, the area increases‖ and documented that 

very few teachers (none from the U.S.) considered to further investigate the cases when this claim holds true or 

does not hold true while relatively more teachers tented to provide a counterexample to refute the claim without 

further investigation of under what condition(s) the claim holds true. It was evident in the excerpt above that 

Scott was able to construct relevant counterexample that suffices to refute the method. However, he aimed to 

further investigate the cases when the claim does not hold true. He was aware that he could draw many 

rectangles with the same perimeter and the areas of these rectangles will fall into a range since the gap between 

the length and the width gets smaller the area gets bigger. Thus, his argument for task A was coded as general 

counterexample. 

 

During the post-interviews, the participants were also shown task B in addition to task A to further analyze their 

conceptions of counterexamples. Including task B also provided insight into participants’ example spaces 

regarding quadrilaterals, which will be discussed next. When task B was presented, Sara was able to recognize 

that it would not hold true for all quadrilaterals and construct an appropriate counterexample to refute the 

statement. 

 

Sara: I want to say sometimes because I drew this quadrilateral and that's not half (drew the 

quadrilateral that is not circled in the figure 14). 

Interviewer: Ok, so the diagonal is not cutting it in half. How about the other diagonal? Do you think 

that it would cut it in half? 

Sara: No, but if you drew like a kite and drew the diagonal then it cut that in half, but in this shape it 

does not. 

Interviewer: How would you prove that the task is not true?  

Sara: By drawing a quadrilateral (drawing the quadrilateral that is circled in figure 14). 

Interviewer: Do you think that this example that you circled enough to prove that the statement is not 

true? 

Sara: Yeah!   
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Figure 14. Sara's counterexample for task B 

 

Even though Sara was able to construct a relevant counterexample to show that the statement would not always 

hold true, she did not attempt to provide a justification for why it could be a relevant counterexample. Instead, 

she depended on the visual appearances of the areas of the two parts in the quadrilateral not being the same 

since she selected the one in which this visual difference is more severe (see figure 14). This applied to other 

participants from different proof schemes. Thus, her counterexample was coded as specific counterexample for 

this task.  

 

Mathematics methods course. When task B was presented, Elaine was able to recognize that it would not always 

hold true. Additionally, she was able to construct a sufficient counterexample where the statement would not 

hold true as can be seen in the following excerpt.  

 
Figure 15. Elaine’s counterexample for task B 

 

Elaine: Ok I think this is sometimes true, because like obviously you can do it with a square, so it 

would work for it. If you just had like some random quadrilateral then I don't think it would work.   

Interviewer: Ok, how did you decide that it would not always work? 

Elaine: Well I'm just assuming, because a quadrilateral just has to have four sides, so I mean it could be 

like any type of, like you could just have random shapes; so I guess that would be, umm, I think it will 

only work for some quadrilaterals. 

 

When asked to describe how she would disprove the statement, Elaine replied as follows:  

 

Elaine: Proving that it is not true, showing at least one example where it doesn't work. 

Interviewer: What would be your example if this were your exam question? 

Elaine: I'm trying to think of how to make sort of random, ok so say you have that shape like (drawing 

the shape in figure 15), I'm not even sure where the diagonal would be so it wouldn't work.  

Interviewer: How do you know this will not work for that shape? 

Elaine: Because even though you're cutting it in half, it's not equal parts. 

 

It should be noted here that Elaine argued during the pre-interviews that providing more than one 

counterexample would make an argument more convincing, even though she was aware that one 

counterexample would be enough to refute a false statement. However, during the post- interviews, she did not 

1
1
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even mention providing more than one counterexample to make an argument more convincing.  Additionally, 

Elaine was able to provide an appropriate counterexample to refute the statement. Even though she attempted to 

put numbers to show that the areas would not be the same, she did not produce a full justification for why the 

areas would indeed not be the same. Thus, her counterexample was coded as specific counterexample.  

 

Watson and Mason (2005) introduce extreme examples as extreme cases that show what happens at the ―edge‖ 

of classes (p.100). It was evident in the excerpt that concave quadrilaterals take places in Elaine’s example 

space. Furthermore, they might serve as an extreme example since Elaine attempted to use a concave example to 

show that the statement would not hold true. When task B was presented, Miranda was able to propose a 

counterexample—a trapezoid—to refute the statement and she was able to explain why a trapezoid would be a 

sufficient counterexample for task B. 

 

Miranda: I think this (referring to task B) is not always true, cause it doesn't work, for instance, for a 

trapezoid. I was thinking that it would work for shapes in which it makes it like symmetrical, but if it 

were a trapezoid it wouldn't make symmetrical parts when you cut in half. 

Interviewer: Ok, do you think that the shapes should have symmetrical parts for this statement to be 

true? 

Miranda: Not necessarily, because just because things aren't symmetrical doesn't mean they can't have 

the same area. If you had a trapezoid and cut it like this, well at least one diagonal, well for this 

diagonal [AC] it wouldn't be equal because you can just see that one side’s bigger than the other but for 

this side it still wouldn't be equal. Because even though the bases would be the same for each triangle, 

the heights would be different for the triangles that the diagonal constructed in the trapezoid. 

 

 
Figure 16. Miranda’s counterexample for task B 

 

As can be seen in the excerpt, Miranda attempted to investigate the condition when the statement holds true or 

when it does not. She proposed the idea of a diagonal (at least one) being a line symmetry (or creating 

symmetrical parts in the shape) in order for the task to be true. However, she was able to recognize that areas of 

the shapes that are not symmetrical could still be the same. She revised her condition and explained that if the 

triangles formed by a diagonal had different heights even if the bases were the same, the areas would be 

different. Even though she was not able to describe the condition when or in which cases this statement does not 

hold true, she was able to construct a counterexample as in figure 16 and provide a justification to explain why 

the statement did not hold true for that specific counterexample. Thus her counterexample was coded as a semi-

general counterexample.   

 

 

Conclusion  
 

This study aimed to investigate what patterns could be observed among pre-service teachers who demonstrated 

different reasoning skills when they attempted to refute false mathematical conjectures. Although this study 

aimed to investigate how the types of arguments that were often used when refuting false statements by PSTs 

who demonstrated a wide range of reasoning abilities differed, the findings of this study suggested that the ways 

PSTs’ refute false mathematical statements and their conceptions of counterexamples showed similarities in two 

proof schemes--empirical and external proof schemes. However, PSTs’ conceptions of counterexamples differed 

significantly in deductive proof scheme. How PSTs, who demonstrated deductive reasoning and did not 

demonstrate deductive reasoning (demonstrated empirical or external reasoning instead), chose to refute false 

mathematical statements and what patterns were observed among different proof schemes will be shared next.  
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A general proof, covering all relevant cases, is necessary to validate the statement and a single counter example 

is sufficient to refute the statement. This study showed that the PSTs who were aware of the necessity to cover 

all possible cases in order to prove true mathematical statements were also aware that providing one 

counterexample was sufficient to refute a false statement. However, this finding is not bidirectional. That is, if 

PSTs are not at deductive proof scheme, it is not necessarily mean that they cannot recognize that one 

counterexample is sufficient to refute a false mathematical statement. Three participants, Sara, Laura, and Elaine 

(in the post-interviews) were aware of the fact that only one counterexample would be enough to refute a false 

mathematical statement; even though, they were not aware of the generality necessity of covering all possible 

cases when they constructed or evaluated a justification for true mathematical statements.  

 

Although it should be cautioned to conclude that if PSTs failed to recognize that covering all cases is a 

necessary condition to validate a true statement, they would also fail to recognize that one counterexample 

would suffice to refute a statement, the majority of the PSTs, who were not aware of the generality rule of 

mathematical proofs, did not recognize that one counterexample was sufficient. Furthermore, some of these 

PSTs tended to believe that providing more than one counterexample would make the argument stronger. Simon 

and Blume (1996) show that many students think that giving one example is not enough to refute an argument. 

Similarly, Galbraith (1981) reported that only 18 percent of students believed that one counterexample was 

sufficient to disprove a statement. This study align with the results of those studies by documenting that the 

majority of the PSTs who did not demonstrate deductive reasoning believed that more than one counterexample 

would be needed to refute a statement and/or providing more than one counterexample would make the 

argument stronger.  

 

Balacheff (1991) found that students relate to counter examples as bizarre instances and do not always recognize 

a counterexample as being sufficient to refute a universal statement. Similarly, Selden and Selden (1998) stated 

that students often fail to see a single counterexample as disproving a conjecture. They argue that this can result 

from perceiving a counterexample as the only one that exist rather than seeing it as generic. This study furthered 

the results of those studies by documenting that even though finding one counterexample was convincing for the 

participants to refute the statements, the participants attempted to provide more counterexamples when it came 

time to convince others, especially a teacher. Harel and Sowder (1998; 2007) define a proof as an argument that 

a person uses to convince himself or herself and others of the truth or falseness of a mathematical statement; 

thus, it consists of what constitutes ―ascertaining‖ and ―persuading‖ for a person or community. They use the 

terms ascertaining and persuading to describe complementary processes of proving as convincing oneself and 

convincing others. The results of this study also demonstrated that the ascertaining and persuading power of 

counterexamples differed.  

 

There were different characteristics observed among PSTs when they were presented with false mathematical 

statements and/or when they attempted to refute the statements based on their conceptions of proof. The PSTs 

who demonstrated deductive reasoning attempted to test the conjectures by generating examples to check the 

validity of the statements presented. However, other participants who demonstrated various proof schemes other 

than deductive reasoning did not always need to generate examples to check the validity of the statements. 

Instead, they believed that the statements would hold true, thereby demonstrating various misconceptions 

underlying their decisions. The possible sources of difficulty in generating such examples were presumed to 

include the following: incomplete knowledge, inability to process existing knowledge, misconceptions, and 

insufficient logical knowledge (Zaslavsky & Peled, 1996). This study also documented that limited knowledge 

of perimeter and area concepts and the misconceptions that perimeter and area have a relationship influenced 

participants’ example generation. Since they believed there was a relationship, they did not even attempt to test 

the method or to generate examples to prove that the method would hold true. However, the participants who 

demonstrated deductive reasoning generated examples to check the validity of the method. Bills et al (2006) 

argued that the process of exemplification is highly demanding, but yet has not been extensively investigated 

with regard to teachers. This study demonstrated that PSTs’ attempt to generate examples indeed differed based 

on their conceptions of proof. Additionally, Rowland, Thwaites and Huckstep (2003) reported that desirable 

choice of examples depends on teacher’s subject matter knowledge. This study aligned with the results of their 

study by documenting that PSTs who constructed counterexamples that were coded as irrelevant also 

demonstrated limited knowledge of the contents that underlined the tasks or questionnaire questions.  

 

PSTs also demonstrated different characteristics when they attempted to generate counterexamples to refute 

false mathematical statements. While PSTs who developed deductive reasoning attempted to justify why and 

how their counterexamples would be appropriate and contradict the claims, PSTs who have not yet developed 

deductive reasoning only provided specific counterexamples without further explanation or justification. In 

other words, semi-general and general counterexamples were prevalent among PSTs who demonstrated 
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deductive reasoning while specific counterexamples were prevalent among PSTs who did not demonstrate 

deductive reasoning.  

 

 

Recommendations 

 

As it has been argued throughout this study as well as in other studies, learning how to evaluate arguments and 

to construct an appropriate counterexample to refute false statements as discussed by one of the Common Core 

State Standards (2010) mathematical practices can only happen if students are provided ample opportunities to 

engage in tasks that not only require a true/false evaluation, but also a viable refutation to support their answer 

as part of their daily mathematical practices. However, this study along with other studies (e.g. Simon & Blume, 

1996) documented the limited understanding of counterexamples among pre-service teachers who are just a step 

away from being a classroom teacher. In order for PSTs to be able to meet this requirement, they should have a 

solid understanding of how to refute false statements in mathematics. All these results highlight the need for 

attention to empowering instructions that are likely to lead PSTs to a better understanding of refutations.  In 

addition to the importance of being attentive to conceptions as well as misconceptions of pre-service teachers 

regarding to constructing counterexamples, it is equally important to consider explanatory power of these 

counterexamples as facets of mathematical reasoning.  

 

Examples are used as a communication device to explain thinking and reasoning in mathematics classrooms 

(Leinhardt 2001). Dahlberg and Housman (1997) documented the benefits of example generation to identify the 

correctness of conjectures and provide explanations. Thus, use of examples should be an important part of 

students’ mathematics learning. As Dahlberg and Housman’s study, this study also demonstrated that using 

examples is an effective strategy to evaluate the validity of mathematical statements. However, this study also 

demonstrated that the use of examples to identify the correctness of mathematical conjectures was not a 

common strategy among all participants, but only among students who demonstrated deductive reasoning. 

Therefore, I believe it could be a promising instructional strategy to encourage the use of examples strategy as 

inseparable part of our math classrooms. 

 

Potari, Zachariades, and Zaslavsky (2010) argue that refuting conjectures and justifying invalid claims is a 

complex process that goes beyond the syntactic derivations of deductive proof. Understanding and mastering 

how to refute false conjectures and what is an appropriate counterexample requires the development of 

rationality and a specific state of knowledge. This study highlighted the importance of PSTs’ understanding of 

underlying concepts when asked to evaluate conjectures and invalid claims and to construct refutations.  In 

addition to PSTs’ limited understanding of counterexamples, their limited understanding of the underlying 

concepts influenced their responses when it comes to refuting false conjectures. Therefore, more studies 

regarding to how pre-service teachers’ content knowledge influence their evaluations and the process of refuting 

conjectures are needed.  

 

 

Note 
 

This study is part of the author’ dissertation study, which was completed at Indiana University under the 

supervision of Dr. Enrique Galindo. 

 

 

References 
 

Alcock, L. & Weber, K. (2005). Proof validation in real analysis: Inferring and evaluating warrants. Journal of 

Mathematical Behavior, 24(2), 125-134. 

Balacheff, N. (1988). Aspects of proof in pupils' practice of school mathematics. In D. Pimm (Ed.), 

Mathematics, teachers, and children (pp.216-238). London: Hodder & Stoughton. 

Balacheff, N. (1991). The benefits and limits of social interaction: The case of mathematical proof. In A. J. 

Bishop, E. Mellin-Olsen, & J. Van Dormolen (Eds.), Mathematical knowledge: Its growth through 

teaching (pp. 175-192). Dordrecht, The Netherlands: Kluwer Academic Publishers. 

Baturo, A., & Nason, R. (1996). Student teachers' subject matter knowledge within the domain of area 

measurement. Educational Studies in Mathematics, 31, 235-268. 

Bills, L. Dreyfus, T. Mason, J. Tsamir, P. Watson, A. & Zaslavsky, O. (2006). Exemplification in mathematics 

education. In J. Novotná, H. Moraová & M. Krátká, &N.Stehliková (Eds) Proceedings of the 30th 



314 Zeybek 

conference of the international group for the psychology of mathematics education (pp.126-154). Prague, 

Czech Republic. 

Common Core State Standards Initiative (CCSSI) (2010). Common Core State Standards for mathematics. 

Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf  

Dahlberg, R. P. & Housman, D. L. (1997). Facilitating learning events through example generation. Educational 

Studies in Mathematics, 33, 283-299. 

Fuller, R. A. (1997). Elementary teachers' pedagogical content knowledge of mathematics. Mid-Western 

Educational Researcher, 10(2), 9-16. 

Galbraith, P.L. (1981). Aspects of proving: A clinical investigation of process. Educational Studies in 

Mathematics, 12, 1-29. 

Giannakoulias, E., Mastorides, E., Potari, D., & Zachariades, T. (2010). Studying teachers’ mathematical 

argumentation in the context of refuting students’ invalid claims. Journal of Mathematical Behavior, 29 

(3), 160-168. 

Glaser, B. G. & Strauss, A. L. (1967). Discovery of grounded theory. Mill Valley, Ca: Sociology Press. 

Hanna, G. (2000). Proof, explanation, and exploration:  An overview. Educational Studies in Mathematics, 44 

(½), 5-23. 

Harel, G. (2007). Students’ proof schemes revisited: Historical and epistemological considerations. In P. Boera 

(Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp.65-78). 

Rotterdam: Sense Publishers. 

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. Schoenfeld, J. 

Kaput, & E. Dubiensky (Eds.), Research in collegiate mathematics education III (pp.234-283). 

Providence, R.I.: American Mathematical Society. 

Harel, G., & Sowder, L. (2007). Toward a comprehensive perspective on proof.  In F. Lester (Ed.), Second 

handbook of research on mathematics teaching and learning (pp.805-842). Reston, VA: National 

Council of Teachers of Mathematics.  

Heaton, R. M. (1992). Who is minding the mathematics content? A case study of a fifth grade teacher. The 

Elementary School Journal, 93(2), 153-162. 

Healy, L. & Hoyles, C. (1998), Justifying and proving in school mathematics: Summary of the results from a 

survey of the proof conceptions of students in the UK (Research Report) (pp. 601-613). London, UK:  

London Institute of Education, University of London. 

Kotelawala, U. (2009). A survey of teacher beliefs on proving. In F. Lin, F. Hsieh, G. Hanna, & M. de Villiers 

(Eds.), Proceedings of the ICMI Study 19 Conference: Proof and proving in mathematics education (pp. 

250-255). National Taiwan Normal University: Department of Mathematics. 

Knuth, E. J. (2002). Secondary school mathematics teachers’ conceptions of proof. Journal for Research in 

Mathematics Education, 33(5), 379-405. 

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York, NY: Cambridge 

University Press. 

Leinhardt, G. (2001). Instructional explanations: A commonplace for teaching and location for contrast. In V. 

Richardson (Ed.), Handbook of Research on Teaching (4edition) (pp. 333-357). Washington DC, USA: 

American Educational Research Association.  

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental 

mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates.  

Martin, W. G. & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal for Research in 

Mathematics Education. 20(1), 41-51. 

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school 

mathematics. Reston, VA: NCTM. 

Quinn, A.L. (2009). Count on number theory to inspire proof. Mathematics Teacher, 103(4), 298-304. 

Peled, I. & Zaslavsky, O. (1997). Counter-example that (only) prove and counter-example that (also) explain. 

FOCUS on Learning Problems in Mathematics, 19(3), 49 – 61. 

Potari, D., Zachariades, T., & Zaslavsky, O. (2010). Mathematics teachers’ reasoning for refuting students’ 

invalid claims. Proceedings of CERME6, 281-290. 

Reid, D. A. (2002). Conjectures and refutations in grade 5 mathematics. Journal for Research in Mathematics 

Education, 33, 5-29. 

Rowland, T., Thwaites, A., & Huckstep, P. (2003). Novices’ choice of examples in the teaching of elementary 

mathematics. In A. Rogerson (Ed.), Proceedings of the International Conference on the Decidable and 

the Undecidable in Mathematics Education (pp. 242-245). Brno, Czech Republic.  

Selden, A. & Selden J. (1998). The role of examples in learning mathematics. The Mathematical Association of 

America Online. Retrieved from:www.maa.org/t_and l/sampler/rs_5.html.  

Selden, A. & Selden, J. (2003). Validations of proofs written as texts: Can undergraduates tell whether an 

argument proves a theorem? Journal for Research in Mathematics Education, 36(1), 4-36. 

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf


315 
 

Int J Educ Math SciTechnol 

Simon, M. A. & Blume, G. W. (1994). Building and understanding multiplicative relationships: A study of 

prospective elementary teachers. Journal for Research in Mathematics Education, 25(5), 472-494. 

Simon, M. A. & Blume, G. W. (1996). Justification in the mathematics classroom: A study of prospective 

elementary teachers. Journal of Mathematical Behavior, 15, 3-31. 

Stavy, R. & Tirosh, D. (2000). How students (mis-)understands science and mathematics: intuitive rules. 

Teachers College Press, New York, NY 

Stylianides, A.J. & Stlyianides, G. J. (2009). Proof constructions and evaluations. Educational Studies in 

Mathematics, 72, 237-253. 

Van Dormolen, J. (1977). Learning to understand what giving a proof really means.  Educational Studies in 

Mathematics, 8(1), 27-34. 

Watson, A. & Mason, J. (2005). Mathematics as a constructive activity: Learners generating examples. 

Mahwah, New Jersey: Lawrence Erlbaum Associates.  

Zazkis, R. & Chernoff, E. J. (2008). What makes a counterexample exemplary? Educational Studies in 

Mathematics, 68(3), 195-208. 

Zazkis, R. & Hazzan, O. (1998). Interviewing in mathematics education research: Choosing the questions. 

Journal of Mathematical Behavior, 17(4), 429-239 

Zaslavksy, O & Peled, I (1996). Inhibiting factors in generating examples by mathematics teachers and student 

teachers: The case of binary operation. Journal for Research in Mathematics Education, 27(1), 67-78. 

Yopp, D.A. (2015). Prospective elementary teachers’ claiming in responses to false generalizations. The Journal 

of Mathematical Behavior, 39, 79-99.  

 

 

Author Information 
Zulfiye Zeybek 
Gaziosmanpasa University 

Education Faculty  

Tokat, Turkey 

Contact e-mail: zulfiye.zeybek@gop.edu.tr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



316 Zeybek 

Appendix A - Sample Questionnaire Questions 

 

Question1: Ms. Jones asked the following question 

to her 5
th

 grade class: 

“Possible or Not? A rectangle that is not a 

parallelogram. Justify your answer.  

Katie claimed that the statement was possible and 

she provided the figure below to justify her answer. 

 
In your opinion, how would Ms. Jones mark Katie’s 

justification? Please circle one of the options below 

and provide your reasons for choosing 

correct/incorrect. 

 
               Correct                            Incorrect 

Your reason(s): 

 

 

Question2: Kelly claimed that the area and 

perimeter of ∆ ABC are going to be the same no 

matter where B is on segment DE of rectangle 

ADEC.  

 
Do you agree with Kelly?  

If you agree with Kelly: Please prove Kelly’s 

conjecture. 

If you disagree with Kelly: Please refute Kelly’s 

conjecture. 

If you partially agree with Kelly’s conjecture: 

Please amend Kelly’s conjecture and then provide a 

proof.  

Question3: Jack was asked to justify that in an 

isosceles triangle ABC, the base angles (∠B and 

∠C) are equal. He drew an angle bisector AD from 

∠A and showed that AB  AC, ∠BAD ∠CAD, 

and   ∠B ∠C. Therefore, Δ ABD  ΔACD by 

A.S.A.  Hence, ∠B ∠C  

 

 
How would you mark Jack’s argument? Please 

circle one of the options below and provide your 

reasons for choosing correct/incorrect. 

Correct    Incorrect 

Your reason(s): 

 

 

Question4: What would be your reaction to the 

following justification of the sum of the interior 

angles of a triangle is 180 degrees: 

―I tore up the angles of a triangle and put them 

together (as shown below), the angles came together 

as a straight line, which is 180 degrees. Therefore, 

the sum of the measures of the interior angles of a 

triangle is equal to 180 degrees‖  

 
 

Is this a proof? Why or Why not? 

 

 
 

 

D

A

B C


